
The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

ORG ; FIVE

Dec Hex Bin
4 4 00000100

OTHER COMMANDS
Conditions
Strings
etc.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 074582

XLAT

• Adds the contents of AL to BX and uses the resulting offset to point to an
entry in an 8 bit translate table.

• This table contains values that are substituted for the original value in AL.
• The byte in the table entry pointed to by BX+AL is moved to AL.

• XLAT [tablename] ; optional because table is assumed at BX

• Table db ‘0123456789ABCDEF’

Mov AL,0A; index value
Mov bx,offset table
Xlat; AL=41h, or ‘A’

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 074583

Data Transfer Instructions - XCHG

Mnemonic Meaning Format Operation Flags
Affected

XCHG Exchange XCHG D,S (Dest)
(Source)

None

Destination Source
Reg16 Reg16
Memory Register
Register Register
Register Memory

Example: XCHG [1234h], BX

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 074584

Data Transfer Instructions – LEA, LDS, LES

Mne
monic

Meaning Format Operation Flags
Affected

LEA Load Effective Address LEA Reg16,EA EA (Reg16) None

LDS Load Register and DS LDS Reg16, MEM32 (Mem32) (Reg16)
(Mem32 + 2)
(DS)

None

LES Load Register and ES LES Reg16, MEM32 (Mem32) (Reg16)
(Mem32 + 2)
(ES)

None

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 074585

LDS BX, [DI];

Examples for LEA, LDS, LES

DATAX DW 1000H
DATAY DW 5000H
.CODE
LEA SI, DATAX
MOV DI, OFFSET DATAY; THIS IS MORE EFFICIENT

LEA BX,[DI]; IS THE SAME AS…
MOV BX,DI; THIS JUST TAKES LESS CYCLES.

LEA BX,DI; INVALID!

7A
12
00
30

11000
11001
11002
11003

?BX

1000DI

1000DS

127A

3000

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 074586

Flag Control Instructions

• LAHF Load AH from flags (AH) (Flags)
• SAHF Store AH into flags (Flags) (AH)

– Flags affected: SF, ZF, AF, PF, CF
• CLC Clear Carry Flag (CF) 0
• STC Set Carry Flag (CF) 1
• CLI Clear Interrupt Flag (IF) 0
• STI Set interrupt flag (IF) 1
• Example (try with debug)

LAHF
MOV AX,0000
ADD AX,00
SAHF
– Check the flag changes!

Individual manipulation of
the flags

Bulk manipulation
of the flags

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 074587

Jump Instructions

• Unconditional
vs conditional
jump

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 074588

Conditional Jump

Mnemonic Description Flags/Registers

JZ Jump if ZERO ZF = 1

JE Jump if EQUAL ZF = 1

JNZ Jump if NOT ZERO ZF = 0

JNE Jump if NOT EQUAL ZF = 0

JC Jump if CARRY CF = 1

JNC Jump if NO CARRY CF = 0

JCXZ Jump if CX = 0 CX = 0

JECXZ Jump if ECX = 0 ECX = 0

These flags are based on general comparison

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 074589

Conditonal Jump based on flags

Mnemonic Description Flags/Registers
JS JUMP IF SIGN (NEGATIVE) SF = 1

JNS JUMP IF NOT SIGN (POSITIVE) SF = 0

JP Jump if PARITY EVEN PF = 1

JNP Jump if PARITY ODD PF = 0

JO JUMP IF OVERFLOW OF = 1

JNO JUMP IF NO OVERFLOW OF = 0

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745810

Jump Based on Unsigned Comparison

Mnemonic Description Flags/Registers

JA Jump if above op1>op2 CF = 0 and ZF = 0

JNBE Jump if not below or equal
op1 not <= op2

CF = 0 and ZF = 0

JAE Jump if above or equal
op1>=op2

CF = 0

JNB Jump if not below
op1 not <opp2

CF = 0

JB Jump if below op1<op2 CF = 1

JNAE Jump if not above nor equal
op1< op2

CF = 1

JBE Jump if below or equal
op1 <= op2

CF = 1 or ZF = 1

JNA Jump if not above
op1 <= op2

CF = 1 or ZF = 1

These flags are based on unsigned comparison

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745811

Jump Based on Signed Comparison

Mnemonic Description Flags/Registers
JG Jump if GREATER op1>op2 SF = OF AND ZF = 0

JNLE Jump if not LESS THAN or equal op1>op2 SF = OF AND ZF = 0
JGE Jump if GREATER THAN or equal op1>=op2 SF = OF

JNL Jump if not LESS THAN op1>=op2 SF = OF

JL Jump if LESS THAN op1<op2 SF <> OF
JNGE Jump if not GREATER THAN nor equal

op1<op2
SF <> OF

JLE Jump if LESS THAN or equal op1 <= op2 ZF = 1 OR SF <> OF

JNG Jump if NOT GREATER THAN op1 <= op2 ZF = 1 OR SF <> OF

These flags are based on signed comparison

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745812

Control Transfer Instructions
(conditional)

• It is often necessary to transfer the program
execution.
– Short

• A special form of the direct jump: “short jump”
• All conditional jumps are short jumps
• Used whenever target address is in range +127 or –128 (single

byte)
• Instead of specifying the address a relative offset is used.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745813

Short Jumps

•Conditional Jump is a two byte instruction.
•In a jump backward the second byte is the 2’s complement of the
displacement value.
•To calculate the target the second byte is added to the IP of the instruction
after the jump.

Ex:

000D ADD AL,[BX]

000F INC BX

0010 DEC CX

0011 JNZ FA

0013

Short Jump 0013 + FA (-6)

= 0D

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745814

.model small

.stack 100h

.data
org 0010
message1 db "You now have a small letter entered !",0dh,0ah,'$'
org 50
message2 db "You have NON small letters ",0dh,0ah,'$'
.code

main proc
mov ax,@data
mov ds,ax
mov ah,00h
int 16h
cmp al,61h
jb next
Cmp al,7Ah
ja next
mov ah,09h
mov dx,offset message1
mov ah,09h
int 21h
int 20h
next: mov dx,offset message2
mov ah,09h
int 21h
mov ax,4C00h
int 21h

main endp
end main

SJ Example
Hello2.exe

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745815

A Simple Example Program finds the sum

• Write a program that adds 5 bytes of data and saves the result. The
data should be the following numbers: 25,12,15,10,11

.model small

.stack 100h

.data

Data_in DB 25,12,15,10,11

Sum DB ?

.code

main proc far

mov ax, @Data

mov ds,ax

mov cx,05h

mov bx,offset data_in

mov al,0

Again: add al,[bx]

inc bx

dec cx

jnz Again

mov sum,al

mov ah,4Ch

INT 21H

Main endp

end main

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745816

Example Output

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745817

Unconditional Jump

Short Jump: jmp short L1 (8 bit)
Near Jump: jmp near ptr Label

If the control is transferred to a memory location within the current code segment
(intrasegment), it is NEAR. IP is updated and CS remains the same

The displacement (16 bit) is added to the IP of the instruction following jump instruction.
The displacement can be in the range of –32,768 to 32,768.
The target address can be register indirect, or assigned by the label.
Register indirect JMP: the target address is the contents of two memory locations
pointed at by the register.
Ex: JMP [SI] will replace the IP with the contents of the memory locations pointed by
DS:DI and DS:DI+1 or JMP [BP + SI + 1000] in SS
Far Jump: If the control is transferred to a memory location outside the current
segment. Control is passing outside the current segment both CS and IP have to be updated
to the new values. ex: JMP FAR PTR label = EA 00 10 00 20
jmp far ptr Label ; this is a jump out of the current segment.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745818

Near Jump

Jumps to the specified IP with +/- 32K distance from the next instruction following
the jmp instruction

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745819

Far Jump

Jumps to the specified CS:IP

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745820

Nested Loops

MOV CX,A
BACK: …
…
…
…
LOOP BACK

MOV CX,A
OUTER: NOP

MOV CX, 99
INNER: NOP

…
…
…
LOOP INNER
NOP
LOOP OUTER

MOV CX,A
OUTER: PUSH CX

MOV CX, 99
INNER: NOP

…
…
…
LOOP INNER
POP CX
LOOP OUTER

Nested Loops

MOV CX,0
DLOOP: JCXZ SKIP ;guarding
BACK: MUL AX,2H
ADD AX,05H
LOOP BACK
SKIP: INC AX; if CX=0

How many times will
the loop execute,
if JCXZ wasn’t there

single Loop

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745821

Loop and Loop Handling Instructions

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745822

Loop

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
BCD number system

• BCD stands for binary coded
decimal.
– Needed because we use the digits 0

to 9 for numbers in everyday life.
– Computer literature features

two terms for BCD numbers:
• Unpacked BCD.
• Packed BCD.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
BCD unpacked vs. packed

• In unpacked BCD, the lower 4 bits of the number
represent the BCD number.
– The rest of the bits are 0.

• "0000 1001" and "0000 0101" are unpacked BCD for 9 & 5.
– Unpacked BCD it takes 1 byte of memory location.

• Or a register of 8 bits to contain the number.

• In packed BCD, a single byte has two BCD numbers.
– One in the lower 4 bits; One in the upper 4 bits.

• "0101 1001" is packed BCD for 59.
– As it takes only 1 byte of memory to store the packed

BCD operands, it is twice as efficient in storing data.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
ASCII numbers

• In ASCII keyboards, when key "0" is activated
"011 0000" (30H) is provided to the computer.
– 31H (011 0001) is provided for key "1", etc.

• To convert ASCII data to BCD, removed the tagged
"011" in the higher 4 bits of the ASCII.
– Each ASCII number is ANDed with "0000 1111“. (0FH)

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
ASCII to unpacked BCD conversion

• Programs 3-5a, 3-5b, and 3-5c show three methods
for converting the 10 ASCII digits to unpacked BCD.
– Using this data segment:

The data is defined as DB, a
byte definition directive, and is
accessed in word-sized chunks.

Program 3-5a

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
ASCII to unpacked BCD conversion

• Programs 3-5a, 3-5b, and 3-5c show three methods
for converting the 10 ASCII digits to unpacked BCD.
– Using this data segment:

Using the PTR directive as
shown, makes the code more
readable for programmers.

Program 3-5b

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3-5c uses based addressing
mode since BX+ASC is used
as a pointer.

3.4: BCD AND ASCII CONVERSION
ASCII to unpacked BCD conversion

• Programs 3-5a, 3-5b, and 3-5c show three methods
for converting the 10 ASCII digits to unpacked BCD.
– Using this data segment:

Program 3-5c

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
ASCII/BCD conversions

• To convert ASCII to packed BCD, it is converted to
unpacked BCD (eliminating the 3), then combined
to make packed BCD.

• To convert packed BCD to ASCII, it must first be
converted to unpacked.
– The unpacked BCD is tagged with 011 0000 (30H).

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
ASCII to packed BCD conversion

• For 4 & 7, the keyboard gives 34 & 37, respectively.
– The goal is to produce packed BCD 47H or “0100 0111“.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
packed BCD to ASCII conversion

• Converting from packed BCD to ASCII.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745832

AAA

Ex. ASCII CODE 0-9 = 30h –> 39h
MOV AX, 38H ;(ASCII code for number 8)

ADD AL, 39H ;(ASCII code for number 9)

AAA; used for addition AX has 0107
ADD AX, 3030H; change answer to ASCII if you needed

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
BCD addition and subtraction

• After adding packed BCD numbers, the result is no
longer BCD.

Adding them gives 0011 1111B (3FH). (not BCD)

– The result should have been 17 + 28 = 45 (0100 0101).
• To correct, add 6 (0110) to the low digit: 3F + 06 = 45H.

– The same could have happened in the upper digit.
• This problem is so pervasive that the vast majority of

microprocessors have an instruction to deal with it.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
DAA

• DAA (decimal adjust for addition) is provided in
the x86 for correcting the BCD addition problem.
– DAA will add 6 to the lower, or higher nibble if needed

• Otherwise, it will leave the result alone.

After execution, DATA3 will contain 72H.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
DAA general rules & summary

• General rules for DAA:
– The source can be an operand of any addressing mode.

• The destination must be AL in order for DAA to work.
– DAA must be used after the addition of BCD operands.

• BCD operands can never have any digit greater than 9.
– DAA works only after an ADD instruction.

• It will not work after the INC instruction.

• After an ADD or ADC instruction:
– If the lower nibble (4 bits) is greater than 9, or if AF = 1.

• Add 0110 to the lower 4 bits.
– If the upper nibble is greater than 9, or if CF = 1.

• Add 0110 to the upper nibble.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
DAA summary of action

Use of DAA after adding multibyte packed BCD
numbers.

See the entire program listing on pages 116-117 of your textbook.

Program 3-6

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

DAA Example

Ex. 4 AL contains 25 (packed BCD)
BL contains 56 (packed BCD)

ADD AL, BL
DAA

25

56

+ ----------

7B 81

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745838

Example

• Write an 8086 program that adds two packed BCD
numbers input from the keyboard and computes and
displays the result on the system video monitor

• Data should be in the form 64+89= The answer 153
should appear in the next line.

? 6 4 + 8 9 =

0 1 2 3 4 5 6 7

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745839

Example Continued

sub byte ptr[si+2], 30h
sub byte ptr[si+3], 30h
sub byte ptr[si+5], 30h
sub byte ptr[si+6], 30h

Mov cl,4
Rol byte ptr [si+3],cl
Rol byte ptr [si+6],cl
Ror word ptr [si+5], cl
Ror word ptr [si+2], cl

Mov al, [si+3]
Add al, [si+6]
DAA
Mov bh,al
Jnc display
Mov al,1
Call display
Mov al,bh
Call display
Int 20

Mov dx, offset bufferaddress
Mov ah,0a
Mov si,dx
Mov byte ptr [si], 6
Int 21
Mov ah,0eh
Mov al,0ah
Int 10
; BIOS service 0e line feed position cursor

6 ? 6 4 + 8 9 =

0 1 2 3 4 5 6 7

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
BCD subtraction and correction

• DAS (decimal adjust for subraction) is provided in
the x86 for correcting the BCD subtraction problem.
– When subtracting packed BCD (single-byte or multibyte)

operands, the DAS instruction is used after SUB or SBB.
• AL must be used as the destination register.

• After a SUB or SBB instruction:
– If the lower nibble is greater than 9, or if AF = 1.

• Subtract 0110 from the lower 4 bits.
– If the upper nibble is greater than 9, or CF = 1.

• Subtract 0110 from the upper nibble.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
BCD subtraction and correction

• Due to the widespread use of BCD numbers, a
specific data directive, DT, has been created.
– To represent BCD numbers 0 to 1020 - 1. (twenty 9s)

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745842

BCD and ASCII Numbers

• BCD (Binary Coded Decimal)
– Unpacked BCD: One byte per digit
– Packed BCD: 4 bits per digit (more efficient in storing data)

• ASCII to unpacked BCD conversion
– Keyboards, printers, and monitors all use ASCII.
– Digits 0 to 9 are represented by ASCII codes 30 – 39.

• Example. Write an 8086 program that displays the packed BCD number
in register AL on the system video monitor
– The first number to be displayed should be the MS Nibble
– It is found by masking the LS Nibble and then rotating the MS Nibble

into the LSD position
– The result is then converted to ASCII by adding 30h
– The BIOS video service is then called to display this result.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745843

ASCII Numbers Example

MOV BL,AL; save
AND AL,F0H
MOV CL,4
ROR AL,CL
ADD AL,30H
MOV AH,0EH
INT 10H ;display single character

MOV AL,BL; use again
AND AL,0FH
ADD AL,30H
INT 10H
INT 20H ; RETURN TO DOS

C

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745844

String Instructions

80x86 is equipped with special instructions to handle string
operations
String: A series of data words (or bytes) that reside in consecutive
memory locations
Operations: move, scan, compare

String Instruction:
Byte transfer, SI or DI increment or decrement by 1
Word transfer, SI or DI increment or decrement by 2
DWord transfer, SI or DI increment or decrement by 4

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745845

String Instructions - D Flag

The Direction Flag: Selects the auto increment D=0 or
the auto decrement D=1 operation for the DI and SI registers during string
operations. D is used only with strings

CLD Clears the D flag / STD Sets the D flag

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745846

String Instructions

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745847

Repeat String REP

Basic string operations must be repeated in order to process arrays of data; this is done
by inserting a repeat prefix.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745848

Example. Find and replace

• Write a program that scans the name “Mr.Gohns” and replaces the
“G” with the letter “J”.
Data1 db 'Mr.Gones','$‘
.code
mov es,ds
cld ;set auto increment bit D=0
mov di, offset data1
mov cx,09; number of chars to be scanned
mov al,'G'; char to be compared against
repne SCASB; start scan AL =? ES[DI]
jne Over; if Z=0
dec di; Z=1
mov byte ptr[di], 'J'

Over: mov ah,09
mov dx,offset data1
int 21h; display the resulting String

Search.exe

search.asm

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745849

Strings into Video Buffer

CLD
MOV AX,0B800H
MOV ES,AX
MOV DI,0
MOV CX,2000H
MOV AL,20h
REP STOSW

Clear.exe
Fill the Video Screen with a value

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745850

Example. Display the ROM BIOS Date

• Write an 8086 program that searches the BIOS ROM
for its creation date and displays that date on the
monitor.

• If a date cannot be found display the message “date not
found”

• Typically the BIOS ROM date is stored in the form
xx/xx/xx beginning at system address F000:FFF5

• Each character is in ASCII form and the entire string is
terminated with the null character (00)

• Add a ‘$’ character to the end of the string and make it
ready for DOS function 09, INT 21

Date.asm

